Recurrent Pregnancy Loss

Mark Perloe, M.D.
Georgia Reproductive Specialists
Atlanta, Georgia

www.IVF.com

Learning Objectives
- Identify possible causes of early pregnancy loss
- Outline basic evaluation for recurrent pregnancy loss (RPL)
- Review current treatment approaches for these patients

Definition
- Classical: 3 or more consecutive pregnancy losses before 20 weeks gestation
- Expanded: 2 or more consecutive losses
 - Risk of further loss similar for 2 versus 3 consecutive losses
 - Initiation of evaluation appropriate after 2 losses based on patient age and desire

Recurrent Loss Epidemiology
- 5% of couples attempting pregnancy have 2 or more consecutive losses
- 1% have 3 or more consecutive losses
- Most clinicians consider RPL even if losses are not consecutive

Miscarriage Epidemiology
- 34% pregnancy loss in prospective cohort of healthy women
 - 22% unrecognized - detected by assay only
 - 12% clinically recognized
- Obstetrical history predictive
 - prior success: 4.6% chance of loss
 - prior loss: 19.24% chance of loss

Miscarriage or Recurrent Pregnancy Loss?
- A single SAB, unless a successful pregnancy intervenes, increases the risk for the next pregnancy
- Distinction between “sporadic” and “recurrent” loss blurred
- Effect of maternal age: SAB risk approaches 50% by age 40 for both aneuploid and euploid losses

Wilcox NEJM 1988;319:189-194
Miscarriage Recurrence Risk

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prior Losses</th>
<th>Recurrence Risk %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liveborn</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>No Live births</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prior Losses</th>
<th>Recurrence Risk %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liveborn</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>No Live births</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>54</td>
</tr>
</tbody>
</table>

Warburton D, Fraser FC: Am J Human Genet 16:1, 1964

PCOS & Pregnancy Loss

- **Pregnancy loss ↑ with PCOS**
 - Franks S, Ann Int Med 93
 - Jacobs HS BRJOBGYN 93

- **GnRH-a ↓ miscarriage in PCOS women**

- **RSA patients with ↑ LH, DHEAS or T more likely to miscarry**

Metformin Reduces Pregnancy Loss in PCOS

- Retrospective study of PCOS women who became pregnant
 - Group 1: metformin during pregnancy (n=101)
 - Group 2: control (n=31)
- Early loss rate 12.9% vs 41.9% (p=0.001)
- Prior SPAB: 15.7% vs 58.3% (p=0.005)

Etiology

Uterine Malformations

- 10-15% recurrent 1st trimester losses have congenital anomaly
- Variations of the double uterus the most common
- Septate loss rates 25-90% - usually amenable to resection
- Bicornuate loss rates 40% - uncertain benefit of surgery

Uterine Fibroids

- Unclear relationship between uterine leiomyomata and RPL
 - Large submucosal fibroids distort the cavity or occupy a large subendometrial area
 - ? Mechanism(s) - mechanical constriction or inadequate placentation resulting from poorly vascularized endometrium
Acquired Uterine Defects

Etiology

- Infection
 - No infectious agent has been proven to cause recurrent pregnancy loss
 - Colonization with *Ureaplasma urealyticum* leading to empiric antibiotics
 - Certain infections have been associated with spontaneous loss
 - *Toxoplasma gondii*, rubella, HSV, CMV, measles, coxsackie

Genetic Factors

- Trisomy (50%)
 - 9/16 all lethal
 - #21 Down Syndrome usually due to meiotic non-disjunction
- Monosomy X (20%)
- Triploidy (15%)
- Tetraploidy (5%)
- Mosaicism (2%)

Etiology

- Genetic Factors

<table>
<thead>
<tr>
<th>% Chromosomal Abnormal by Gestational Age</th>
<th>% abnormal</th>
<th>Gestational age</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Etiology

- Genetic Factors

- Parental abnormalities in 3-5% of couples with recurrent loss
- Balanced translocation most common
 - Reciprocal (60%) or Robertsonian (40%)
 - 25-50% risk of pregnancy loss
 - May eventually produce normal offspring

Etiology

- Genetic Factors

- Homologous Robertsonian translocation
 - 1/2500 couples
 - Precludes successful reproduction
 - Heterozygous may lead to partial monosomy or trisomy; "milder" phenotypical expression

Etiology

Genetic Factors

- Speculation about single gene mutations
 - Blastocyst formation
 - Implantation
 - Morphogenesis of vital organs
- DNA Activitation
 - Epigentics
 - Methylation

Skewed X inactivation

- Preferential inactivation (>90%) of one of the X alleles
- May be lethal to a male offspring
- May result in X-autosome translocations
- Trisomy mosaicism in the germline

Advanced Maternal Age

- Impact on risk for pregnancy loss cannot be over-emphasized
- Increased rates of maternally-derived trisomies
- Oocytes recruited later in life more likely to be abnormal or experience meiotic error
- Non-chromosomal factors

Outcome of Pregnancies from Patients Before and After PGD for Chromosomal Translocation

- Mean age 32.5 ± 3.9 years

Fertility and Miscarriage Rates as a Function of Maternal Age

Decline in the Number of Oocytes from Birth to Menopause

Etiology
Thrombophilia

- Pregnancy is a hypercoagulable state
- Women with heritable or acquired thrombophilic disorders have significantly increased risks of pregnancy loss

Kutteh Semin Reprod Med 2006;24(1):54-65

Etiology
Thrombophilia

- Antiphospholipid Antibodies (APA)
- Lupus Anticoagulant
- Heterozygous Factor V Leiden (G1691A)
- Factor II-prothrombin mutation (G20210A)
- PAI-1 Deficiency
- Antithrombin III Deficiency
- Protein S & C Deficiency
- Elevated Factor VIII
- Hyperhomocysteinemia (MTHFR C677T and A1298C)

Etiology
Thrombophilia

- Venous

Most common acquired:
- Anti-phospholipid antibodies (APAs)
- Activated Protein C resistance
- Hyperhomocysteinemia (MTHFR C677T and A1298C)
- Other possible abnormalities
 - Anti-thrombin deficiency
 - Protein C or S deficiency
 - Elevated Factor VIII

Etiology
Thrombophilia

- Arterial

Hyperhomocysteinemia
- APAs
- Lupus anticoagulant

Etiology
Thrombophilia

- Factor V Leiden
 - Autosomal dominant
 - Acquired activated protein C resistance in pregnancy, OCP use and in presence of APAs
 - Heterozygotes: 7X increase lifetime risk thrombosis; 15X increase during pregnancy or OCP use
 - Homozygotes: 50-100X increase lifetime risk thrombosis
Etiology

Thrombophilia

- **Prothrombin G20210A Mutation**
 - Higher plasma prothrombin concentrations, augmented thrombin generation
 - Heterozygotes: 2-3% Whites
 - Conflicting prevalence studies among RPL
 - Recent critical review suggests an association

- **Hyperhomocysteinemia polymorphisms**
 - **C677T thermolabile MTHFR**
 - Heterozygous: 10-20% Whites
 - Normal or slightly elevated homocysteine
 - Increased homocysteine when combined with B vitamin deficiencies
 - Homozygous: 10% Whites
 - Significantly increased homocysteine
 - A1298C often occurs with thermolabile C677T
 - 33% frequency in Dutch population
 - Combined heterozygosity results in hyperhomocysteinemia and decreased plasma folate levels

- **Hyperhomocysteinemia**

 - Significant association between hyperhomocysteinemia and RPL
 - Mechanism: interference in embryonic development through defective chorionic villous vascularization
 - Known association with later pregnancy-related complications

- **Anti-thrombin Deficiency**
 - Physiologic inhibitor of coagulation
 - Type I: quantitative; decreased antigen and function; caused by gene deletions, nucleotide changes
 - Type II: qualitative; normal antigen levels, decreased function; caused by point mutations with single amino acid changes leading to a dysfunctional protein

- **Anti-thrombin Deficiency**
 - Autosomal dominant
 - Prevalence Type I heterozygous carriers: 1/2000 – 1/5000
 - Prevalence Type II heterozygous carriers: 3/1000
 - Most thrombogenic of inherited thrombophilia: 20-50% lifetime risk
 - Associated increased risk stillbirth and fetal loss
Etiology
Thrombophilia

- **Protein C Deficiency**
 - Down-regulates coagulation cascade; deficiencies lead to unregulated fibrin formation
 - Autosomal dominant: > 160 mutations
 - Type I: quantitative
 - Type II: decreased function
 - Associated with 2nd trimester losses

- **Protein S Deficiency**
 - Principal cofactor of activated Protein C; mimics C deficiency; questionable association with pregnancy loss
 - Autosomal dominant: > 160 mutations; prevalence 0.15-0.8% general population; acquired forms in multiple disease states
 - Type I: quantitative
 - Type II: decreased function
 - Type III: low free protein, normal antigen, reduced activity

Etiology
Luteal Phase Defect

- Luteal phase defect is a controversial cause of RPL
 - Studies proving LVD as a cause of RPL lacking
 - No convincing studies showing LVD treatment improves pregnancy outcome
 - 80% of women with low midluteal progesterone proceed to term
 - 20% of fertile women have abnormal endometrial biopsies
 - P4 drops after meals & standing

Etiology
Endocrine Factors

- Poorly controlled diabetes
- Overt hyperthyroidism
- Overt hypothyroidism
- No evidence that asymptomatic systemic endocrinologic or metabolic disorders are a cause of RPL

Etiology
Autoimmune Factors

- Certain autoimmune diseases are associated with pregnancy loss
 - Systemic lupus erythematosus
 - 1st trimester loss: 10% risk
 - 2nd and 3rd trimester loss: 6%
 - Anti-phospholipid syndrome
 - 2nd trimester loss: 38%

- Anti-phospholipid antibodies (aPL)
 - autoantibodies recognizing various combinations of phospholipids, phospholipid-binding proteins; or both
- Anti-phospholipid syndrome (APS) - clinical association between aPL and syndrome of hypercoagulability
Etiology Autoimmune Factors

- APS diagnostic criteria:
 - Clinical features
 - Vascular thrombosis or
 - Loss of fetus at or after 10 weeks or
 - Preterm delivery at or before 34 weeks or
 - 3 or more consecutive SAB before 10 weeks

- Laboratory features
 - Anti-cardiolipin (aCL) antibodies: IgG or IgM at moderate or high levels on 2 or more occasions at least 6 weeks apart
 - Lupus anticoagulant (LA) antibodies: detected on 2 or more occasions at least 6 weeks apart

Etiology Autoimmune Factors

- Other anti-phospholipid antibodies
 - Anti-phosphatidylserine: nearly always associated with APS, highly correlated to cardiolipin binding
 - Other antibodies have less correlation
 - No consistency among reported studies
 - No independence from aCL

- Other auto-antibodies NOT associated with RPL
 - Anti-nuclear antibodies may be more common among women with RPL but their presence or absence do not predict subsequent pregnancy outcome

- Anti-thyroglobulin and anti-thyroid peroxidase are markers of increased risk for pregnancy loss if identified early in pregnancy

- Some small studies suggest a slight association in RPL; other larger studies do not

- Subsequent pregnancy outcomes not affected

Etiology
Alloimmune Factors

- Immune response to non-self components of pregnancy
 - Cytotoxic antibodies
 - Absence of maternal blocking antibodies
 - Inappropriate sharing of HLA
 - Disturbances in natural killer cell function and distribution

Etiology
Alloimmune Factors

- Cytotoxic antibodies
 - Maternal response to paternal antigens
 - Present in normal pregnancies
 - More common in fertile couples than those with RPL
 - No bearing on subsequent pregnancy outcome

Etiology
Alloimmune Factors

- Blocking antibodies
 - Theory: maternal anti-fetal antibodies block maternal cell-mediated response; if absent, then fetal rejection occurs

Etiology
Alloimmune Factors

- Blocking antibodies
 - Not present in normal pregnancies, yet are often present in RPL
 - Detected by the non-specific mixed lymphocyte response assay

Etiology
Alloimmune Factors

- Animal model: B-cell deficient (agammaglobulinemic) mice have normal pregnancy outcomes
 - Human agammaglobulinemics have successful pregnancies
 - Presence or absence not predictive of subsequent outcome

Etiology
Alloimmune Factors

- Parental HLA sharing
 - Theory: if parents are antigenically similar, mother is less likely to develop blocking antibodies
 - Studies contradictory; some show increased sharing in HLA-B and HLA-DR loci
 - Most show no associations

Porter Semin Reprod Med 2000;18(4):393-400
Etiology Alloimmune Factors

- Natural killer cells
 - Theory: CD56+ NK-like cells secrete a transforming growth factor-β-like substance crucial to the maintenance of pregnancy
 - Present in endometria and early gestational decidua of women with RPL

- Murine models show activation of NK cells increases the rate of abortion, depletion of NK cells has opposite effect
- Human studies show no association of testing and successful pregnancy
- No correlation between blood testing and endometrial NK activity
 - Hormonally dependent

Etiology T helper (Th1) immunodystrophism

- Theory: aberrant or inappropriate Th1 stimulation may result in overproduction of cytokines that have deleterious effect on conceptus
- Dichotomous Th1 versus Th2 cytokine profile associated with human pregnancy loss and success

- No significant difference in semen parameters among men whose partners have RPL compared to WHO standards and men fathering successful pregnancies
- No difference in incidence of anti-sperm antibodies
- Aside from cytogenetic abnormalities, male factor contribution to RPL unknown

DNA Fragmentation may result in early embryo loss
 - Hum Reprod. 2006 Nov;21(11):2876-81; Check JH: Arch Androl. 2005 Mar-Apr;51(2):121-4

Etiology Male Factor

- RPL males have higher incidence of sperm aneuploidy:
 - Oligoasthenoteratosperma 35-74%
 - Fertile donor sperm 4-7%

Etiology Environmental Factors

- Confirmed association
 - Ionizing irradiation
 - Organic solvents
 - Alcohol
 - Mercury
 - Lead

- Suspected association
 - Caffeine (> 300 mg/day)
 - Hyperthermia/fever
 - Cigarette smoking

- Unknown association
 - Pesticides
Etiology
- Diagnostic x-rays
- Air travel
- Microwave ovens
- Diagnostic ultrasounds
- Electromagnetic fields
- Video display terminals
- Aspartame

Environmental Factors
- Chocolate
- Drinking water
- BGH
- Phytoestrogens
- Phthalates
- Herbicides
- Hair dyes
- Nail polish
- Saccharin

Idiopathic
- More than 50% of couples with RPL have no explanation despite extensive evaluation(s)
- Informative and sympathetic counseling appears to play an important role
 - 70% live birth rates reported in couples with unexplained RPL who undertake an untreated subsequent pregnancy

Evaluation
History
- Pattern and trimester of pregnancy losses and whether a live embryo or fetus was present
- Exposure to environmental, toxins or drugs
- Known gynecological or obstetrical infections
- Features associated with APS

Lab Tests
- Saline Sonogram or hysteroscopy
- Hysterosalpingogram
- Luteal phase endometrial biopsy; repeat in next cycle if abnormal
- Placental CGH analysis
- Parental karyotypes
- Lupus anticoagulant, thrombophilia testing
- Anticardiolipin & Antiserine antibodies IgG and IgM
- HgbATC or 2hr IGTT
- TSH, TPO, Prolactin

Evaluation

Tests
- Antiphosphatidylserine antibody IgG and IgM
- Platelet count
- Thrombophilia mutations and functional assays
- Thyroid stimulating hormone

Tests NOT useful
- Other anti-phospholipid antibodies
- ANA
- Maternal anti-paternal leukocyte antibodies
- Mixed lymphocyte maternal-paternal cell cultures
- HLA genotyping
- Mouse embryotoxicity assays
- Immunophenotype panels (CD56, CD16)

Hill ASRM 2002 Course 6 p.58-59

Treatment Thrombophilia

For heritable or acquired thrombophilia: lovenox or heparin anticoagulation
For bonafide APS, multiple studies support use of lovenox or heparin and aspirin

Treatment APS

- Aspirin 81 mg po/day
- Subcutaneous heparin 10K-20K units/day divided doses
- Alternative: Lovenox 40-80mg SQ
- Calcium supplementation

Treatment Thrombophilia

For elevated homocysteinemia without thrombosis history
- Supplementation with Vitamin B6, B12 and folic acid
- Metafolin PNV: Neevo, Prenate DHA
- Anticoagulation for history of thrombosis or failure to normalize homocysteine levels
Empiric Treatment

- Use of aspirin alone attractive because of ease of use and relative safety profile, barring contraindication to low-dose aspirin use
- Supporting data lacking

Treatment - Immunotherapy

- "Blocking antibody" hypothesis
- Intravenous immunoglobulin
 - Studies and meta-analyses show no benefit
 - Extremely expensive $7-14,000
 - Side effects: headache, hypotension, nausea
 - Potential anaphylaxis in IgA deficient patients
 - Potential for prion disease transmission due to large pool of donors

Treatment - Immunotherapy

- Progesterone called "nature's immunosuppressant" due to inhibition of immune cells at maternal-fetal interface
- No verification yet through RCT
- Safe and inexpensive
- Dose: 100 mg BID vaginal suppositories, beginning 3 days after ovulation

Supportive Treatment

- 60-90% chance of pregnancy success with supportive care and...
 - Timed intercourse for genetic and idiopathic RPL
 - Surgery for selected anatomic factors
 - Ovulation induction for LPD or irregular menstrual cycles
 - Luteal phase hCG with irregular cycles.

Supportive Treatment

- 60-90% chance of pregnancy success with supportive care and...
 - Immunosuppressive P₄ for presumed alloimmune factors
 - Thyroid replacement for hypothyroidism
 - Keep TSH < 3.5
 - Appropriate anticoagulation for APS/thrombophilias
Management: Genetic Losses

- Consider Microarray CGH or SNP analysis
 - IVF
 - Day 3 biopsy vs Day 5
 - Risk of biopsy vs blast cryo
 - High implantation rates
 - Create probe for single gene defect or aneuploidy
 - Embryo biopsy allows detection of entire genome

Embryo Evaluation “omics”

- GENomics
 - FISH – day 3
 - Array CGH – day 5
 - SNPs
- TRANSciPTOmics
 - Gene transcription
- PROTEomics
 - Proteins
 - Secretomics
- METABOLOmics
 - Metabolites
 - Amino Acids

Biopsy and Preimplantation Genetic Diagnosis of a 3-Day-Old (Eight-Cell) Embryos

Embryos and Blastocysts during Assisted Reproduction (x20)
Analysis by Comparative Genomic Hybridization of a Blastomere Obtained by Biopsy of a Six-to-Eight-Cell Embryo

Management: Genetic Losses
- Drawbacks of CGH/SNPs Microarray
 - Expense
 - Possibility of no transfer
 - 10-25% mosaicism and potential for misidentification
 - No large scale studies supporting benefit for recurrent pregnancy loss

Blastocyst Apposition and Adhesion

Blastocyst Implantation

Maintenance of Early Pregnancy

Summary
- Early pregnancy loss is a frustrating entity for both patients and providers
- Possibility of successful pregnancy outcome high, depending on maternal age and number of prior losses
- Understanding the potential underlying mechanisms of loss along with empathetic supportive care decreases emotional stress and facilitates cost-effective evaluation and therapy
Questions?